Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(1)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212123

RESUMO

BACKGROUND: Treatment with immune checkpoint inhibitors (ICIs) targeting programmed death-1 (PD-1) can yield durable antitumor responses, yet not all patients respond to ICIs. Current approaches to select patients who may benefit from anti-PD-1 treatment are insufficient. 5-hydroxymethylation (5hmC) analysis of plasma-derived cell-free DNA (cfDNA) presents a novel non-invasive approach for identification of therapy response biomarkers which can tackle challenges associated with tumor biopsies such as tumor heterogeneity and serial sample collection. METHODS: 151 blood samples were collected from 31 patients with non-small cell lung cancer (NSCLC) before therapy started and at multiple time points while on therapy. Blood samples were processed to obtain plasma-derived cfDNA, followed by enrichment of 5hmC-containing cfDNA fragments through biotinylation via a two-step chemistry and binding to streptavidin coated beads. 5hmC-enriched cfDNA and whole genome libraries were prepared in parallel and sequenced to obtain whole hydroxymethylome and whole genome plasma profiles, respectively. RESULTS: Comparison of on-treatment time point to matched pretreatment samples from same patients revealed that anti-PD-1 treatment induced distinct changes in plasma cfDNA 5hmC profiles of responding patients, as judged by Response evaluation criteria in solid tumors, relative to non-responders. In responders, 5hmC accumulated over genes involved in immune activation such as inteferon (IFN)-γ and IFN-α response, inflammatory response and tumor necrosis factor (TNF)-α signaling, whereas in non-responders 5hmC increased over epithelial to mesenchymal transition genes. Molecular response to anti-PD-1 treatment, as measured by 5hmC changes in plasma cfDNA profiles were observed early on, starting with the first cycle of treatment. Comparison of pretreatment plasma samples revealed that anti-PD-1 treatment response and resistance associated genes can be captured by 5hmC profiling of plasma-derived cfDNA. Furthermore, 5hmC profiling of pretreatment plasma samples was able to distinguish responders from non-responders using T cell-inflamed gene expression profile, which was previously identified by tissue RNA analysis. CONCLUSIONS: These results demonstrate that 5hmC profiling can identify response and resistance associated biological pathways in plasma-derived cfDNA, offering a novel approach for non-invasive prediction and monitoring of immunotherapy response in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transição Epitelial-Mesenquimal , Biologia
2.
Clin Gastroenterol Hepatol ; 21(7): 1802-1809.e6, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36967102

RESUMO

BACKGROUND & AIMS: Early detection of pancreatic cancer (PaC) can drastically improve survival rates. Approximately 25% of subjects with PaC have type 2 diabetes diagnosed within 3 years prior to the PaC diagnosis, suggesting that subjects with type 2 diabetes are at high risk of occult PaC. We have developed an early-detection PaC test, based on changes in 5-hydroxymethylcytosine (5hmC) signals in cell-free DNA from plasma. METHODS: Blood was collected from 132 subjects with PaC and 528 noncancer subjects to generate epigenomic and genomic feature sets yielding a predictive PaC signal algorithm. The algorithm was validated in a blinded cohort composed of 102 subjects with PaC, 2048 noncancer subjects, and 1524 subjects with non-PaCs. RESULTS: 5hmC differential profiling and additional genomic features enabled the development of a machine learning algorithm capable of distinguishing subjects with PaC from noncancer subjects with high specificity and sensitivity. The algorithm was validated with a sensitivity for early-stage (stage I/II) PaC of 68.3% (95% confidence interval [CI], 51.9%-81.9%) and an overall specificity of 96.9% (95% CI, 96.1%-97.7%). CONCLUSIONS: The PaC detection test showed robust early-stage detection of PaC signal in the studied cohorts with varying type 2 diabetes status. This assay merits further clinical validation for the early detection of PaC in high-risk individuals.


Assuntos
Ácidos Nucleicos Livres , Diabetes Mellitus Tipo 2 , Neoplasias Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Epigenômica , Detecção Precoce de Câncer , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética
3.
PLoS Pathog ; 18(3): e1010409, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35344575

RESUMO

Potent and durable vaccine responses will be required for control of malaria caused by Plasmodium falciparum (Pf). RTS,S/AS01 is the first, and to date, the only vaccine that has demonstrated significant reduction of clinical and severe malaria in endemic cohorts in Phase 3 trials. Although the vaccine is protective, efficacy declines over time with kinetics paralleling the decline in antibody responses to the Pf circumsporozoite protein (PfCSP). Although most attention has focused on antibodies to repeat motifs on PfCSP, antibodies to other regions may play a role in protection. Here, we expressed and characterized seven monoclonal antibodies to the C-terminal domain of CSP (ctCSP) from volunteers immunized with RTS,S/AS01. Competition and crystal structure studies indicated that the antibodies target two different sites on opposite faces of ctCSP. One site contains a polymorphic region (denoted α-ctCSP) and has been previously characterized, whereas the second is a previously undescribed site on the conserved ß-sheet face of the ctCSP (denoted ß-ctCSP). Antibodies to the ß-ctCSP site exhibited broad reactivity with a diverse panel of ctCSP peptides whose sequences were derived from field isolates of P. falciparum whereas antibodies to the α-ctCSP site showed very limited cross reactivity. Importantly, an antibody to the ß-site demonstrated inhibition activity against malaria infection in a murine model. This study identifies a previously unidentified conserved epitope on CSP that could be targeted by prophylactic antibodies and exploited in structure-based vaccine design.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Animais , Anticorpos Antiprotozoários , Epitopos , Humanos , Malária Falciparum/prevenção & controle , Camundongos , Plasmodium falciparum , Proteínas de Protozoários/genética
4.
Nat Commun ; 12(1): 1063, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594061

RESUMO

The most advanced P. falciparum circumsporozoite protein-based malaria vaccine, RTS,S/AS01 (RTS,S), confers partial protection but with antibody titers that wane relatively rapidly, highlighting the need to elicit more potent and durable antibody responses. Here, we elucidate crystal structures, binding affinities and kinetics, and in vivo protection of eight anti-NANP antibodies derived from an RTS,S phase 2a trial and encoded by three different heavy-chain germline genes. The structures reinforce the importance of homotypic Fab-Fab interactions in protective antibodies and the overwhelmingly dominant preference for a germline-encoded aromatic residue for recognition of the NANP motif. In this study, antibody apparent affinity correlates best with protection in an in vivo mouse model, with the more potent antibodies also recognizing epitopes with repeating secondary structural motifs of type I ß- and Asn pseudo 310 turns; such insights can be incorporated into design of more effective immunogens and antibodies for passive immunization.


Assuntos
Anticorpos Antiprotozoários/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Sequências Repetitivas de Aminoácidos , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos/imunologia , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Cinética , Camundongos Endogâmicos C57BL , Modelos Moleculares , Parasitos/imunologia , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
5.
J Mol Biol ; 432(4): 1048-1063, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31883801

RESUMO

Malaria vaccine candidate RTS,S/AS01 is based on the central and C-terminal regions of the circumsporozoite protein (CSP) of P. falciparum. mAb397 was isolated from a volunteer in an RTS,S/AS01 clinical trial, and it protects mice from infection by malaria sporozoites. However, mAb397 originates from the less commonly used VH3-15 germline gene compared to the VH3-30/33 antibodies generally elicited by RTS,S to the central NANP repeat region of CSP. The crystal structure of mAb397 with an NPNA4 peptide shows that the central NPNA forms a type I ß-turn and is the main recognition motif. In most anti-NANP antibodies studied to date, a germline-encoded Trp is used to engage the Pro in NPNA ß-turns, but here the Trp interacts with the first Asn. This "conserved" Trp, however, can arise from different germline genes and be located in the heavy or the light chain. Variation in the terminal ψ angles of the NPNA ß-turns results in different dispositions of the subsequent NPNA and, hence, different stoichiometries and modes of antibody binding to rsCSP. Diverse protective antibodies against NANP repeats are therefore not limited to a single germline gene response or mode of binding.


Assuntos
Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Animais , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos/genética , Formação de Anticorpos/fisiologia , Calorimetria , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Epitopos/imunologia , Feminino , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Esporozoítos/patogenicidade
6.
Front Immunol ; 10: 2467, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708920

RESUMO

Mutants of a catalytically inactive variant of Proteinase 3 (PR3)-iPR3-Val103 possessing a Ser195Ala mutation relative to wild-type PR3-Val103-offer insights into how autoantigen PR3 interacts with antineutrophil cytoplasmic antibodies (ANCAs) in granulomatosis with polyangiitis (GPA) and whether such interactions can be interrupted. Here we report that iHm5-Val103, a triple mutant of iPR3-Val103, bound a monoclonal antibody (moANCA518) from a GPA patient on an epitope remote from the mutation sites, whereas the corresponding epitope of iPR3-Val103 was latent to moANCA518. Simulated B-factor analysis revealed that the binding of moANCA518 to iHm5-Val103 was due to increased main-chain flexibility of the latent epitope caused by remote mutations, suggesting rigidification of epitopes with therapeutics to alter pathogenic PR3·ANCA interactions as new GPA treatments.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos/imunologia , Autoantígenos/imunologia , Epitopos/imunologia , Granulomatose com Poliangiite/imunologia , Mieloblastina/imunologia , Simulação por Computador , Granulomatose com Poliangiite/terapia , Células HEK293 , Humanos , Mutação , Mieloblastina/química , Mieloblastina/genética , Conformação Proteica
7.
Nat Commun ; 10(1): 4328, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551421

RESUMO

Transmission-blocking vaccines have the potential to be key contributors to malaria elimination. Such vaccines elicit antibodies that inhibit parasites during their development in Anopheles mosquitoes, thus breaking the cycle of transmission. To date, characterization of humoral responses to Plasmodium falciparum transmission-blocking vaccine candidate Pfs25 has largely been conducted in pre-clinical models. Here, we present molecular analyses of human antibody responses generated in a clinical trial evaluating Pfs25 vaccination. From a collection of monoclonal antibodies with transmission-blocking activity, we identify the most potent transmission-blocking antibody yet described against Pfs25; 2544. The interactions of 2544 and three other antibodies with Pfs25 are analyzed by crystallography to understand structural requirements for elicitation of human transmission-blocking responses. Our analyses provide insights into Pfs25 immunogenicity and epitope potency, and detail an affinity maturation pathway for a potent transmission-blocking antibody in humans. Our findings can be employed to guide the design of improved malaria transmission-blocking vaccines.


Assuntos
Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Anticorpos Antiprotozoários/química , Formação de Anticorpos , Sítios de Ligação de Anticorpos , Cristalografia por Raios X , Humanos , Malária Falciparum/transmissão , Proteínas de Protozoários/química
8.
Clin Immunol ; 187: 37-45, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29031828

RESUMO

There is significant debate regarding whether B cells and their antibodies contribute to effective anti-cancer immune responses. Here we show that patients with metastatic but non-progressing melanoma, lung adenocarcinoma, or renal cell carcinoma exhibited increased levels of blood plasmablasts. We used a cell-barcoding technology to sequence their plasmablast antibody repertoires, revealing clonal families of affinity matured B cells that exhibit progressive class switching and persistence over time. Anti-CTLA4 and other treatments were associated with further increases in somatic hypermutation and clonal family size. Recombinant antibodies from clonal families bound non-autologous tumor tissue and cell lines, and families possessing immunoglobulin paratope sequence motifs shared across patients exhibited increased rates of binding. We identified antibodies that caused regression of, and durable immunity toward, heterologous syngeneic tumors in mice. Our findings demonstrate convergent functional anti-tumor antibody responses targeting public tumor antigens, and provide an approach to identify antibodies with diagnostic or therapeutic utility.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos B/imunologia , Neoplasias/imunologia , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos , Sítios de Ligação de Anticorpos/imunologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/secundário , Progressão da Doença , Feminino , Humanos , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Melanoma/imunologia , Melanoma/secundário , Pessoa de Meia-Idade , Metástase Neoplásica , Plasmócitos/imunologia , Células Precursoras de Linfócitos B , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia
9.
Proc Natl Acad Sci U S A ; 114(48): E10438-E10445, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29138320

RESUMO

Acquired resistance against antimalarial drugs has further increased the need for an effective malaria vaccine. The current leading candidate, RTS,S, is a recombinant circumsporozoite protein (CSP)-based vaccine against Plasmodium falciparum that contains 19 NANP repeats followed by a thrombospondin repeat domain. Although RTS,S has undergone extensive clinical testing and has progressed through phase III clinical trials, continued efforts are underway to enhance its efficacy and duration of protection. Here, we determined that two monoclonal antibodies (mAbs 311 and 317), isolated from a recent controlled human malaria infection trial exploring a delayed fractional dose, inhibit parasite development in vivo by at least 97%. Crystal structures of antibody fragments (Fabs) 311 and 317 with an (NPNA)3 peptide illustrate their different binding modes. Notwithstanding, one and three of the three NPNA repeats adopt similar well-defined type I ß-turns with Fab311 and Fab317, respectively. Furthermore, to explore antibody binding in the context of P. falciparum CSP, we used negative-stain electron microscopy on a recombinant shortened CSP (rsCSP) construct saturated with Fabs. Both complexes display a compact rsCSP with multiple Fabs bound, with the rsCSP-Fab311 complex forming a highly organized helical structure. Together, these structural insights may aid in the design of a next-generation malaria vaccine.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/terapia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/química , Antígenos de Protozoários/química , Antígenos de Protozoários/isolamento & purificação , Antígenos de Protozoários/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Cristalografia por Raios X , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Humanos , Vacinas Antimaláricas/química , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/uso terapêutico , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/uso terapêutico , Sequências Repetitivas de Aminoácidos/imunologia , Relação Estrutura-Atividade
10.
J Infect Dis ; 214(5): 762-71, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27296848

RESUMO

BACKGROUND: Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. METHODS: In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. RESULTS: A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. DISCUSSIONS: A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. CLINICAL TRIALS REGISTRATION: NCT01857869.


Assuntos
Esquemas de Imunização , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/biossíntese , Anticorpos Antiprotozoários/imunologia , Afinidade de Anticorpos , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/biossíntese , Cadeias Leves de Imunoglobulina/biossíntese , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Sci Transl Med ; 7(294): 294ra105, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26136476

RESUMO

The sleep disorder narcolepsy is linked to the HLA-DQB1*0602 haplotype and dysregulation of the hypocretin ligand-hypocretin receptor pathway. Narcolepsy was associated with Pandemrix vaccination (an adjuvanted, influenza pandemic vaccine) and also with infection by influenza virus during the 2009 A(H1N1) influenza pandemic. In contrast, very few cases were reported after Focetria vaccination (a differently manufactured adjuvanted influenza pandemic vaccine). We hypothesized that differences between these vaccines (which are derived from inactivated influenza viral proteins) explain the association of narcolepsy with Pandemrix-vaccinated subjects. A mimic peptide was identified from a surface-exposed region of influenza nucleoprotein A that shared protein residues in common with a fragment of the first extracellular domain of hypocretin receptor 2. A significant proportion of sera from HLA-DQB1*0602 haplotype-positive narcoleptic Finnish patients with a history of Pandemrix vaccination (vaccine-associated narcolepsy) contained antibodies to hypocretin receptor 2 compared to sera from nonnarcoleptic individuals with either 2009 A(H1N1) pandemic influenza infection or history of Focetria vaccination. Antibodies from vaccine-associated narcolepsy sera cross-reacted with both influenza nucleoprotein and hypocretin receptor 2, which was demonstrated by competitive binding using 21-mer peptide (containing the identified nucleoprotein mimic) and 55-mer recombinant peptide (first extracellular domain of hypocretin receptor 2) on cell lines expressing human hypocretin receptor 2. Mass spectrometry indicated that relative to Pandemrix, Focetria contained 72.7% less influenza nucleoprotein. In accord, no durable antibody responses to nucleoprotein were detected in sera from Focetria-vaccinated nonnarcoleptic subjects. Thus, differences in vaccine nucleoprotein content and respective immune response may explain the narcolepsy association with Pandemrix.


Assuntos
Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Receptores de Orexina/imunologia , Proteínas de Ligação a RNA/imunologia , Proteínas do Core Viral/imunologia , Sequência de Aminoácidos , Linhagem Celular , Criança , Humanos , Imunidade , Imunoglobulina G/sangue , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Espectrometria de Massas , Dados de Sequência Molecular , Narcolepsia/imunologia , Proteínas do Nucleocapsídeo , Receptores de Orexina/química , Peptídeos/química , Peptídeos/imunologia , Proteínas de Ligação a RNA/química , Vírus Reordenados/imunologia , Estações do Ano , Alinhamento de Sequência , Vacinação , Proteínas do Core Viral/química
12.
OMICS ; 7(2): 143-59, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14506844

RESUMO

cDNA-AFLP, a technology historically used to identify small numbers of differentially expressed genes, was adapted as a genome-wide transcript profiling method. mRNA levels were assayed in a diverse range of tissues from Arabidopsis thaliana plants grown under a variety of environmental conditions. The resulting cDNA-AFLP fragments were sequenced. By linking cDNA-AFLP fragments to their corresponding mRNAs via these sequences, a database was generated that contained quantitative expression information for up to two-thirds of gene loci in A. thaliana, ecotype Ws. Using this resource, the expression levels of genes, including those with high nucleotide sequence similarity, could be determined in a high-throughput manner merely by comparing cDNA-AFLP profiles with the database. The lengths of cDNA-AFLP fragments inferred from their electrophoretic mobilities correlated well with actual fragment lengths determined by sequencing. In addition, the concentrations of AFLP fragments from single cDNAs were highly correlated, illustrating the validity of cDNA-AFLP as a quantitative, genome-wide, transcript profiling method. cDNA-AFLP profiles were also qualitatively consistent with mRNA profiles obtained from parallel microarray analysis, and with data from previous studies.


Assuntos
Arabidopsis/genética , DNA Complementar/genética , Perfilação da Expressão Gênica/métodos , Genoma de Planta , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , DNA Complementar/química , Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
13.
Bioinformatics ; 18(6): 873-7, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12075023

RESUMO

MOTIVATION: Searches for near exact sequence matches are performed frequently in large-scale sequencing projects and in comparative genomics. The time and cost of performing these large-scale sequence-similarity searches is prohibitive using even the fastest of the extant algorithms. Faster algorithms are desired. RESULTS: We have developed an algorithm, called SST (Sequence Search Tree), that searches a database of DNA sequences for near-exact matches, in time proportional to the logarithm of the database size n. In SST, we partition each sequence into fragments of fixed length called 'windows' using multiple offsets. Each window is mapped into a vector of dimension 4(k) which contains the frequency of occurrence of its component k-tuples, with k a parameter typically in the range 4-6. Then we create a tree-structured index of the windows in vector space, with tree-structured vector quantization (TSVQ). We identify the nearest neighbors of a query sequence by partitioning the query into windows and searching the tree-structured index for nearest-neighbor windows in the database. When the tree is balanced this yields an O(logn) complexity for the search. This complexity was observed in our computations. SST is most effective for applications in which the target sequences show a high degree of similarity to the query sequence, such as assembling shotgun sequences or matching ESTs to genomic sequence. The algorithm is also an effective filtration method. Specifically, it can be used as a preprocessing step for other search methods to reduce the complexity of searching one large database against another. For the problem of identifying overlapping fragments in the assembly of 120 000 fragments from a 1.5 megabase genomic sequence, SST is 15 times faster than BLAST when we consider both building and searching the tree. For searching alone (i.e. after building the tree index), SST 27 times faster than BLAST. AVAILABILITY: Request from the authors.


Assuntos
Algoritmos , Alinhamento de Sequência/estatística & dados numéricos , Análise por Conglomerados , Biologia Computacional , Bases de Dados de Ácidos Nucleicos
14.
Plant Mol Biol ; 48(1-2): 75-97, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11860215

RESUMO

After the completion of the genomic sequence of Arabidopsis thaliana, it is now a priority to identify all the genes, their patterns of expression and functions. Transcript profiling is playing a substantial role in annotating and determining gene functions, having advanced from one-gene-at-a-time methods to technologies that provide a holistic view of the genome. In this review, comprehensive transcript profiling methodologies are described, including two that are used extensively by the authors, cDNA-AFLP and cDNA microarraying. Both these technologies illustrate the requirement to integrate molecular biology, automation, LIMS and data analysis. With so much uncharted territory in the Arabidopsis genome, and the desire to tackle complex biological traits, such integrated systems will provide a rich source of data for the correlative, functional annotation of genes.


Assuntos
Perfilação da Expressão Gênica , Plantas/genética , Transcrição Gênica , Genoma de Planta , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...